深度学习(DL)的快速增长和部署目睹了新兴的隐私和安全问题。为了减轻这些问题,已经讨论了安全的多方计算(MPC),以实现隐私保护DL计算。在实践中,它们通常是在很高的计算和沟通开销中,并有可能禁止其在大规模系统中的受欢迎程度。两种正交研究趋势吸引了人们对安全深度学习的能源效率的巨大兴趣,即MPC比较方案的高架降低和硬件加速度。但是,他们要么达到较低的减少比率,因此由于计算和通信节省有限而遭受了高潜伏期,或者是渴望的,因为现有的作品主要集中在CPU和GPU等一般计算平台上。在这项工作中,作为第一次尝试,我们通过将加密构件构建块的硬件延迟整合到DNN损耗功能中,以实现高能量效率,开发了一个系统的polympcnet,以减少MPC比较协议和硬件加速的联合额外降低的系统框架Polympcnet。和安全保证。我们的关键设计原理不是在DNN进行良好训练之后(通过删除或删除某些非物质操作员)训练(通过删除或删除某些非物质操作员)之后检查模型敏感性,而是要准确地执行DNN设计中的假设 - 培训DNN既是DNN都硬件有效且安全,同时逃脱了当地的最小值和鞍点并保持高精度。更具体地说,我们提出了通过多项式激活初始化方法直接提出的加密硬件友好的可训练多项式激活功能,以替代昂贵的2P-RELU操作员。我们开发了一个密码硬件调度程序和现场可编程门阵列(FPGA)平台的相应性能模型。
translated by 谷歌翻译
物联网设备越来越多地通过神经网络模型实施,以启用智能应用程序。从环境环境中收集能源的能源收集(EH)技术是电池可为这些设备供电的有前途的替代方法,因为维护成本较低和能源的广泛可用性。但是,能量收割机提供的功率很低,并且具有不稳定性的固有缺点,因为它随环境环境而变化。本文提出了EVE,EVE是一种自动化机器学习(AUTOML)共同探索框架,以搜索具有共享权重的所需的多模型,以进行能源收集的物联网设备。这些共享模型显着降低了记忆足迹,具有不同级别的模型稀疏性,延迟和准确性,以适应环境变化。进一步开发了有效的实施实施体系结构,以有效地执行设备上的每个模型。提出了一种运行时模型提取算法,该算法在触发特定模型模式时以可忽略的开销检索单个模型。实验结果表明,EVE生成的神经网络模型平均比没有修剪和共享的基线模型快2.5倍倍权重。
translated by 谷歌翻译
RGB热场景解析最近吸引了计算机视野领域的越来越多的研究兴趣。但是,大多数现有方法都无法对预测映射进行良好的边界提取,并且不能完全使用高级功能。此外,这些方法简单地融合了RGB和热模式的特征,但无法获得全面的融合功能。为解决这些问题,我们提出了一个用于RGB热场景解析的边缘感知指导融合网络(EGFNet)。首先,我们介绍使用RGB和热图像生成的先前边缘映射,以捕获预测映射中的详细信息,然后在特征映射中嵌入先前的边缘信息。为了有效地熔断RGB和热信息,我们提出了一种多峰融合模块,可确保足够的跨模型融合。考虑到高级语义信息的重要性,我们提出了全局信息模块和语义信息模块,以从高级功能中提取丰富的语义信息。为了解码,我们使用简单的元素添加级联特征融合。最后,为了提高解析精度,我们将多任务深入监督对语义和边界映射应用。对基准数据集进行了广泛的实验,以证明所提出的ENFNET的有效性及其与现有技术的状态相比的优越性。代码和结果可以在https://github.com/shaohuadong2021/gfnet找到。
translated by 谷歌翻译
最近,基于云的图形卷积网络(GCN)在许多对隐私敏感的应用程序(例如个人医疗保健和金融系统)中表现出了巨大的成功和潜力。尽管在云上具有很高的推理准确性和性能,但在GCN推理中保持数据隐私,这对于这些实际应用至关重要,但仍未得到探索。在本文中,我们对此进行了初步尝试,并开发了$ \ textit {cryptogcn} $ - 基于GCN推理框架的同型加密(HE)。我们方法成功的关键是减少HE操作的巨大计算开销,这可能比明文空间中的同行高的数量级。为此,我们开发了一种方法,可以有效利用GCN推断中基质操作的稀疏性,从而大大减少计算开销。具体而言,我们提出了一种新型的AMA数据格式方法和相关的空间卷积方法,该方法可以利用复杂的图结构并在HE计算中执行有效的矩阵矩阵乘法,从而大大减少HE操作。我们还开发了一个合作式框架,该框架可以通过明智的修剪和GCN中激活模块的多项式近似来探索准确性,安全级别和计算开销之间的交易折扣。基于NTU-Xview骨架关节数据集,即,据我们所知,最大的数据集对同型的评估,我们的实验结果表明,$ \ textit {cryptogcn} $均优胜于最先进的解决方案。同构操作的延迟和数量,即在延迟上达到3.10 $ \ times $加速,并将总代态操作数量减少77.4 \%,而准确度的较小精度损失为1-1.5 $ \%$。
translated by 谷歌翻译
从实验或模拟数据中学习对的相互作用对于分子模拟引起了极大的兴趣。我们提出了一种使用可区分的模拟(DIFFSIM)从数据中学习对相互作用的通用随机方法。 DIFFSIM通过分子动力学(MD)模拟定义了基于结构可观察物(例如径向分布函数)的损耗函数。然后,使用反向传播直接通过随机梯度下降直接学习相互作用电位,以通过MD模拟计算相互作用势的结构损耗度量标准的梯度。这种基于梯度的方法是灵活的,可以配置以同时模拟和优化多个系统。例如,可以同时学习不同温度或不同组合物的潜力。我们通过从径向分布函数中恢复简单的对电位(例如Lennard-Jones系统)来证明该方法。我们发现,与迭代Boltzmann倒置相比,DIFFSIM可用于探测配对电位的更广泛的功能空间。我们表明,我们的方法可用于同时拟合不同组成和温度下的模拟电位,以提高学习势的可传递性。
translated by 谷歌翻译
尖峰神经网络(SNN)因其高能量效率和分类性能的最新进展而引起了很多关注。但是,与传统的深度学习方法不同,对SNN对对抗性例子的鲁棒性的分析和研究仍然相对欠发达。在这项工作中,我们通过实验和分析三个重要的SNN安全属性来推进对抗机器学习的领域。首先,我们表明对SNN的成功白盒对抗性攻击高度依赖于潜在的替代梯度技术。其次,我们分析了SNN和其他最先进的体系结构(如视觉变压器和大型传输CNN)生成的对抗性示例的可传递性。我们证明,SNN并不经常被视觉变压器和某些类型的CNN产生的对抗典范所欺骗。最后,我们开发了一种新颖的白盒攻击,该攻击生成了能够同时欺骗SNN模型和非SNN模型的对抗性示例。我们的实验和分析是广泛而严格的,涵盖了两个数据集(CIFAR-10和CIFAR-100),五种不同的白色盒子攻击以及十二个不同的分类器模型。
translated by 谷歌翻译
变压器被认为是自2018年以来最重要的深度学习模型之一,部分原因是它建立了最先进的记录(SOTA)记录,并有可能取代现有的深神经网络(DNNS)。尽管取得了显着的胜利,但变压器模型的延长周转时间是公认的障碍。序列长度的多样性施加了其他计算开销,其中需要将输入零填充到批处理中的最大句子长度,以容纳并行计算平台。本文针对现场可编程的门阵列(FPGA),并提出了一个连贯的序列长度自适应算法 - 硬件与变压器加速度的共同设计。特别是,我们开发了一个适合硬件的稀疏注意操作员和长度意识的硬件资源调度算法。提出的稀疏注意操作员将基于注意力的模型的复杂性降低到线性复杂性,并减轻片外记忆流量。提出的长度感知资源硬件调度算法动态分配了硬件资源以填充管道插槽并消除了NLP任务的气泡。实验表明,与CPU和GPU实施相比,我们的设计准确度损失很小,并且具有80.2 $ \ times $和2.6 $ \ times $速度,并且比先进的GPU加速器高4 $ \ times $ $ $ \ times $通过Cublas Gemm优化。
translated by 谷歌翻译
对机器学习模型的会员推理攻击(MIA)可能会导致模型培训中使用的培训数据集的严重隐私风险。在本文中,我们提出了一种针对成员推理攻击(MIAS)的新颖有效的神经元引导的防御方法。我们确定了针对MIA的现有防御机制的关键弱点,在该机制中,他们不能同时防御两个常用的基于神经网络的MIA,表明应分别评估这两次攻击以确保防御效果。我们提出了Neuguard,这是一种新的防御方法,可以通过对象共同控制输出和内部神经元的激活,以指导训练集的模型输出和测试集的模型输出以具有近距离分布。 Neuguard由类别的差异最小化靶向限制最终输出神经元和层平衡输出控制的目标,旨在限制每一层中的内部神经元。我们评估Neuguard,并将其与最新的防御能力与两个基于神经网络的MIA,五个最强的基于度量的MIA,包括三个基准数据集中的新提出的仅标签MIA。结果表明,Neuguard通过提供大大改善的公用事业权衡权衡,一般性和间接费用来优于最先进的防御能力。
translated by 谷歌翻译
分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠并大幅加速模拟来简化粒子的表示。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以显着的边距胜过现有的数据驱动方法。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译